

Versuchsergebnisse aus Bayern 2014

Faktorieller Sortenversuch WINTERROGGEN

Ergebnisse aus Versuchen in Zusammenarbeit mit den Landwirtschaftsämtern

Herausgeber: Bayerische Landesanstalt für Landwirtschaft Institut für Pflanzenbau und Pflanzenzüchtung

Am Gereuth 8, 85354 Freising

@

Autoren: U. Nickl, L. Huber, A. Wiesinger, T. Eckl, M. Schmidt

Kontakt: Tel: 08161/71-3628, Fax: 08161/71-4085 Email: ulrike.nickl@LfL.bayern.de

Versuch 072: Faktorieller Sortenversuch zur Beurteilung von Resistenz, Anbaueigenschaften, Qualität und Ertrag

Inhaltsverzeichnis

Allgemeine Hinweise	
Ertragsentwicklung und Vegetationsverlauf in Bayern	6
Sortenbeschreibung	
Versuchsbeschreibung	10
Geprüfte Sorten / Stämme	11
Standortbeschreibung und Anbaubedingungen	12
Düngung und Pflanzenschutz	13
Kommentar	14
Sortenempfehlung für den Herbstanbau 2014/2015	
Kornertrag relativ, Sorten und Orte, 2014	17
Kornertrag absolut, Sorten, Anbaugebiete und Behandlungen, 2014	18
Kornertrag relativ, Sorten, Anbaugebiete und Behandlungen, 2014	19
Kornertrag absolut, Sorten, Anbaugebiete und Behandlungen, mehrjährig	20
Kornertrag relativ, Sorten, Anbaugebiete und Behandlungen, mehrjährig	21
Kornertrag absolut, Sorten, Orte und Behandlungen, 2014	25
Rentabilität des Produktionsmitteleinsatzes	26
Beobachtungen und Feststellungen	32

Allgemeine Hinweise

Der vorliegende Versuchsbericht soll die Versuchsergebnisse ausführlich, und dennoch in kompakter Form, darstellen. Er enthält deshalb allgemeine Informationen zum Anbau in Bayern, die Beschreibung der Versuchsorte und Anbaubedingungen. Die ebenfalls enthaltene Sortenbeschreibung beruht auf mehrjährigen bayerischen Versuchsergebnissen; die Ausprägung der einzelnen Sortenmerkmale ist in der bewährten Symbolform dargestellt. Seit 2006 wird Bayern in vier Anbaugebiete eingeteilt (vgl. Karte Seite 5). Die Ergebnisse werden getrennt für jedes Anbaugebiet dargestellt. Da im Anbaugebiet Jura/Hügelland keine Versuche liegen, sind hier keine Ergebnisse ausgewiesen.

Erklärung der Mittelwertberechnungen

Die in den Tabellen mit Relativzahlen dargestellten Mittelwerte sind wie folgt berechnet:

Die **Relativzahlen für die einzelnen Versuchsorte** werden auf der Basis ("Mittel") des jeweiligen Einzelortes berechnet.

Die **Mittelwerte über die Orte** werden auf der Basis des Gesamtdurchschnittes aller Sorten und Orte gebildet, d.h. es wird als Bezugsbasis das absolute Ertragsmittel über alle Orte verwendet und damit der Relativwert von jeder Sorte berechnet (absolutes Sortenmittel bezogen auf absolutes Versuchsmittel).

In die Mittelwerte über die Sorten je Anbaugebiet werden nur die Sorten des Hauptsortiments einbezogen. Die Berechnung der Relativzahlen basiert auf dem Sortenmittel des Hauptsortiments je Stufe. Die Relativzahlen für das Mittel der Stufen werden auf Basis des absoluten Mittels der Summe aus beiden Stufen berechnet.

Ein- und mehrjährige Mittelwerttabellen mit statistischer Beurteilung

Unter "mehrjährig" sind alle Sorten aufgeführt, die mindestens einjährig an allen Orten im Landessortenversuch und vorher i.d.R. 3 Jahre in der Wertprüfung

standen. Die unterschiedliche Anzahl an Prüfjahren und Prüforten wird durch "Adjustierung" ausgeglichen, d.h. die Erträge werden mit Hilfe eines statistischen Modells jeweils auf 5 Jahre und die maximale Anzahl an Orten "hochgerechnet". Damit sind alle Sorten unabhängig von ihrer Prüfdauer und den jeweiligen Prüforten vollständig und nahezu unverzerrt untereinander vergleichbar. Neben den Ergebnissen aus den Landessortenversuchen (LSV) fließen auch die Resultate aus den vorangegangenen Wertprüfungsjahren (WP) mit in die mehrjährige Berechnung ein. Insgesamt werden die Ergebnisse der letzten 5 Jahre berücksichtigt.

Liegen drei oder mehr LSV Jahre (das erste Jahr kann auch WP3 sein) vor, so kann das Ergebnis als endgültig gesichert angesehen werden. Damit ist eine abschließende Bewertung der Sortenleistung möglich. Als "vorläufig" wird das Ergebnis bezeichnet, wenn eine Sorte 2 Jahre (das erste Jahr kann auch WP3 sein) im LSV stand. Als "Trend" ist das Ergebnis zu betrachten, wenn die Sorte nur im aktuellen Prüfjahr (an allen LSV-Orten) angebaut wurde.

Die Sorten-Mittelwertvergleiche sind wegen der unterschiedlichen Anzahl an Ergebnissen je Sorte graphisch dargestellt. Für jede Sorte wird der Mittelwert mit 90%-Konfidenzintervallen angegeben (d.h. in 90 von 100 Fällen enthalten die errechneten Intervallgrenzen den wahren Wert). Die Mittelwerte sind der besseren Übersichtlichkeit wegen absteigend sortiert.

Zwei Mittelwerte unterscheiden sich dann signifikant, wenn ihre Intervalle nicht den jeweils anderen Mittelwert einschließen. Je mehr Ergebnisse in den Mittelwert einer Sorte einfließen, desto kleiner wird das Konfidenzintervall.

Unterscheiden sich Sortenmittelwerte nicht signifikant, so heißt dies nicht zwangsläufig, dass die Sorten gleichwertig sind; vielmehr können diese Unterschiede bei der gewählten Irrtumswahrscheinlichkeit (95%) wegen der Streuung der Einzelergebnisse nicht statistisch abgesichert werden.

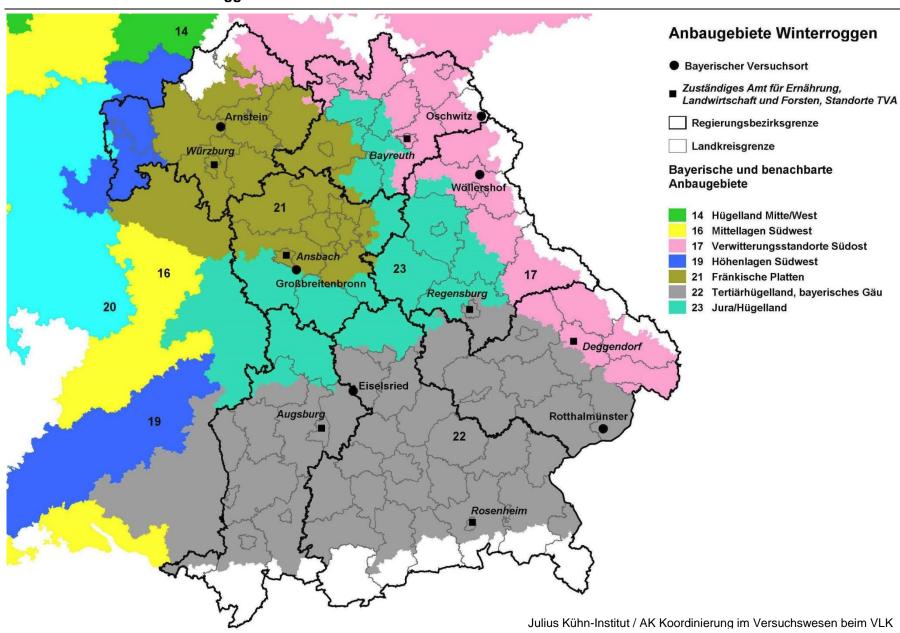
Allgemeine Hinweise - Fortsetzung

Auswertung nach Anbaugebieten

In Deutschland wurde ein länderübergreifendes Versuchswesen vereinbart, das mit hoher Effizienz regionale Sortenempfehlungen erlaubt. Nicht politische, sondern pflanzenbauliche Gebiete bilden die Grundlage für Versuchsserien. Diese Anbaugebiete setzen sich aus Boden-Klima-Räumen zusammen, die auf der Basis von Boden- und Klimaparametern gebildet wurden. In der Abbildung sind die Anbaugebiete für Winterroggen dargestellt. Bayern ist hier in vier Gebiete unterteilt:

- Verwitterungsstandorte Südost (17)
- o Fränkische Platten (21)
- Tertiärhügelland/Gäu (22)
- Jura/Hügelland (23)

Die Anbaugebiete orientieren sich nicht an politischen Grenzen, sondern reichen teilweise in benachbarte Bundesländer.


Für jedes Anbaugebiet werden weitere Anbaugebiete entsprechend ihrer genetischen Korrelation (= Ähnlichkeit) als "Überlappungsgebiete" definiert und auf diese Weise dynamische Großräume gebildet. Das relevante außerbayerische Überlappungsgebiet ist das Gebiet 16, davon aber nur die an die bayerischen Anbaugebiete angrenzenden Teilgebiete. Die Daten aus dem Überlappungsgebiet werden je nach Ähnlichkeitsgrad gewichtet und bilden gemeinsam mit den Daten des Anbaugebietes die Basis für die Auswertung und Ergebnisdarstellung. In den Grafiken sind die Mittelwerte je Sorte der Stufe 2 mit den jeweiligen Konfidenzintervallen dargestellt. Die Größe des Vertrauensintervalls hängt von der Zahl der Versuche ab, aus denen der Mittelwert gebildet wurde. Je mehr Versuche, desto kleiner das Vertrauensintervall.

Zeichenerklärung für die Sortenbeschreibung:

- +++ sehr gut, sehr hoch, sehr früh, sehr kurz
- ++ gut bis sehr gut, hoch bis sehr hoch, früh bis sehr früh, kurz bis sehr kurz
- + gut, hoch, früh, kurz
- (+) mittel bis gut, mittel bis hoch, mittel bis früh, mittel bis kurz
- o mittel
- (-) mittel bis schlecht, mittel bis gering, mittel bis spät, mittel bis lang
- schlecht, gering, spät, lang
- schlecht bis sehr schlecht, gering bis sehr gering,
 spät bis sehr spät, lang bis sehr lang
- --- sehr schlecht, sehr gering, sehr spät, sehr lang

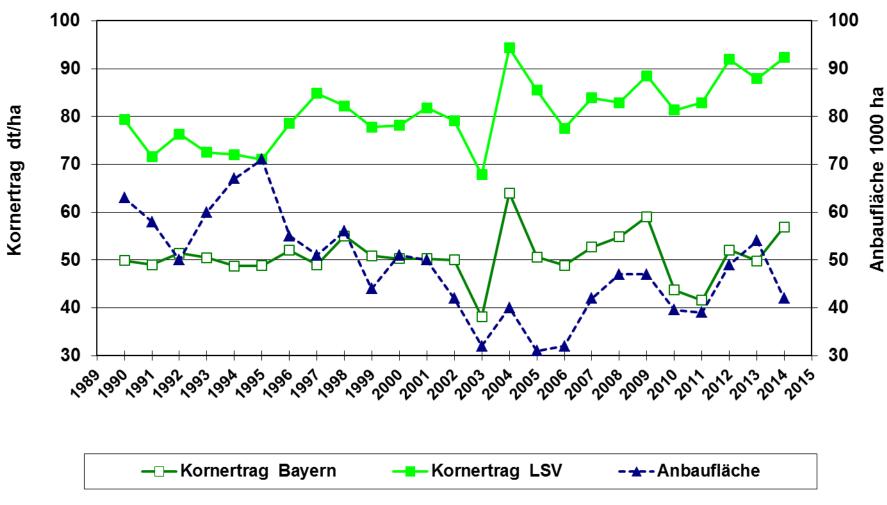
Bedeutung der in Noten ausgedrückten Ausprägungen in den Boniturtabellen:

- 1 fehlend bis gering
- 2 sehr gering bis gering
- 3 gering
- 4 gering bis mittel
- 5 mittel
- 6 mittel bis stark
- 7 stark
- 8 stark bis sehr stark
- 9 sehr stark

Ertragsentwicklung und Vegetationsverlauf in Bayern

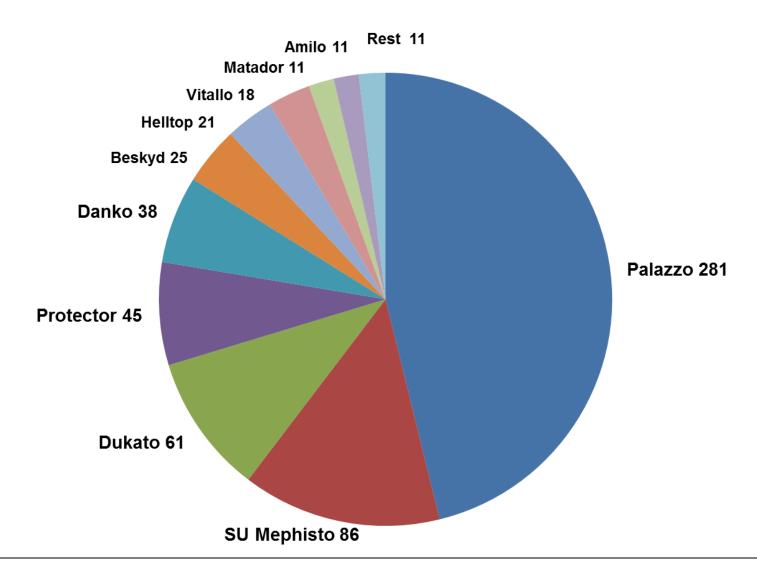
Nicht nur in der Praxis konnte heuer mit rund 57 dt/ha eine gute Ernte eingefahren werden, auch in den Landessortenversuchen präsentierte sich Roggen in der Regel ertragsstark. In den intensiv geführten Varianten wurden teilweise Erträge über 100 dt/ha geerntet.

Nachdem 2012/13 die Anbaufläche deutlich ausgeweitet wurde, verlor Roggen (inkl. Wintermenggetreide) heuer wieder an Bedeutung. Deutschlandweit sank die Fläche um 19 % auf 784 000 ha. Aus Bayern wurde ein Rückgang um 22 % auf 42 000 ha gemeldet.


In den letzten beiden Jahren hatten nahezu alle Partien Brotroggenqualität, d.h. Fallzahlen von über 120 s sowie die Mindestwerte im Amylogamm wurden erreicht. Die Qualitäten von früh gedroschenen Beständen sind heuer ebenfalls gut. Niedrige Fallzahlen wurden bis jetzt lediglich von einigen Partien gemeldet, die wegen der häufigen Niederschläge verspätet geerntet wurden. Betroffen waren vor allem lagernde Bestände. Das Thema Mutterkorn hat wieder an Bedeutung gewonnen, da sich die Europäische Behörde für Lebensmittelsicherheit und das Bundesinstitut für Risikobewertung in den vergangenen Jahren mit Ergotalkaloiden (Giftstoffe im Mutterkorn) in Lebens- und Futtermitteln beschäftigten. Es wurden niedrige Ergotalkaloid-Gehalte veröffentlicht, die ein Mensch maximal täglich mit der Nahrung zu sich nehmen sollte. Neue Grenzwerte wurden aber bis jetzt nicht eingeführt. Zudem sind die analytischen Methoden

langwierig und teuer. Um den Mutterkorngehalt im Endprodukt möglichst gering und auf der sicheren Seite zu halten, erarbeitete heuer das Max-Rubner Institut in Zusammenarbeit mit weiteren Experten für den Getreidebau und die Getreideverarbeitung 'Handlungsempfehlungen zur Minimierung von Mutterkorn und Ergotalkaloiden in Getreide'.

Bei der Vermarktung von Roggen als Nahrungsmittel wird häufig ein Höchstwert von 0,05 Gewichtsprozent Mutterkorn gefordert, im Futtermittelbereich liegt dieser meist bei 0,1 %. Aber auch bei der Produktion von Bioethanol-Roggen darf der Gehalt nicht zu hoch sein, da das Nebenprodukt Schlempe häufig weiterverarbeitet wird und als Tierfutter dient.


Neben geringen Mutterkorngehalten sollte bei der Sortenwahl, unabhängig von der Verwertungsrichtung, Wert auf hohe Erträge, auf eine geringe Lagerneigung sowie auf möglichst gute Resistenzen gegen Braunrost und Rhynchosporium gelegt werden. Fallzahlstabilität spielt bei der Sortenwahl für Brotroggen eine Rolle.

Winterroggenerzeugung in Bayern

Quelle: Statistisches Landesamt (Ernte- und Berichterstattung 2014 vorläufig)

Vermehrungsfläche Winterroggensorten Bayern 2014, Gesamt 608 ha

Sortenbeschreibung

	Korn-	Ertr	agskompo	nenten	Stand-	Wuchs-	Reife	Fall-	Resi	stenz ge	gen	Mutter-
Sorte	ertrag	TKG	Kornz./	Bestandes-	festig-	höhe		zahl ¹⁾	Rhyncho-	Mehl-	Braun-	korn-
			Ähre ¹⁾	dichte	keit				sporium ¹⁾	tau ¹⁾	rost	befall ²⁾
Hybridsorten												
Visello	+	0	0	+	0	(+)	0	+	0	0	_	+
Palazzo	++	(+)	0	(+)	(+)	0	0	+	(+)	(+)	(-)	(+)
Brasetto	++	0	(+)	(+)	(+)	(+)	0	+	(+)	+	0	(+)
SU Mephisto	++	(-)	(+)	+	(+)	0	0	(+)	0	++	(+)	(-) ⁴⁾
SU Forsetti	+++	0	(+)	++	(+)	(+)	0	(+)	0	0	(+)	o ⁴⁾
SU Performer	+++	0	0	++	(+)	(+)	0	++	(+)	(+)	(+)	(-) ⁴⁾
KWS Bono	+	(-)	(-)	+++	0	+	0	(+)	(+)	*	(+)	(+) ³⁾
SU Composit	+	0	0	+	(+)	+	0	(+)	(+)	*	+	o ³⁾⁴⁾
SU Cossani	+++	0	(-)	+++	(+)	(+)	0	(+)	(+)	*	(+)	o ³⁾⁴⁾
Populationssorte	n								1			
Conduct	-	(+)	-	0	0	-	0	(+)	(+)	+	+	+
Dukato	(-)	0	_	(+)	+	(-)	0	0	(+)	(+)	(+)	+
Inspector	(-)	(+)	0	(+)	(+)	(-)	0	(+)	(+)	(+)	+	+

¹⁾ Einstufung nach BSL 2014

^{*}Keine Einstufung

²⁾ Zeichenerklärung für Mutterkornbefall: += geringer Befall, (+) = mittel bis geringer Befall, o = mittel, (-) mittel bis hoher Befall, -- sehr hoher Befall

³⁾ Einstufung nach BSL 2014, vorläufige Beschreibung

⁴⁾ Einstufung auf der Basis 'reiner Sorten', ohne Berücksichtigung der reduzierenden Wirkung auf den Mutterkornbefall durch Beimischung von Populationssorten sonstige Zeichenerklärung: +++= sehr gut, ++ = gut bis sehr gut, hoch bis sehr hoch, früh bis sehr früh, kurz bis sehr kurz, + = gut/hoch/früh/kurz, (+) = mittel bis gut/hoch/früh/kurz, o = mittel, (-) = mittel bis schlecht/gering/spät/lang, - = schlecht/gering/spät/lang

Versuchsbeschreibung

Versuchsanlage: zweifaktorielle Spaltanlage, 2 Faktoren, 3 Wiederholungen

6 Orte, davon 3 Orte mit Wertprüfung

Faktoren: 1. Sorten: Hauptsortiment: 9 Hybridsorten, 3 Populationssorten

Wertprüfung: 1 Vergleichssorte und 4 Stämme

(detaillierte Auflistung in Tabelle "Geprüfte Sorten/Stämme")

2. Intensität: Beschreibung der Stufen (Behandlungen):

	N-Düngung	Wachstumsregulator	Fungizide
Beh. 1	ortsüblich optimal	ohne	ohne
Beh. 2	ortsüblich optimal	ortsüblich	nach Bedarf

Geprüfte Sorten / Stämme

Anbau Nr.	Kenn- Nr. BSA	Sortenname/ Sorten- bezeichnung	Тур	Pr. Art*	Sorteninhaber / Vertrieb (Kurzform)	Anbau Nr.	Kenn- Nr. BSA	Sortenname/ Sorten- bezeichnung	Тур	Pr. Art*	Sorteninhaber / Vertrieb (Kurzform)
1	00969	Conduct VRS	Р	L	KWLO	10	01341	KWS Bono	Н	L	KWLO
2	00978	Visello	Н	L	KWLO	11	01364	SU Composit	Н	L	HYBR/BAYW
3	01069	Dukato	Р	L	HYBR/SAUN	12	01365	SU Cossani	Н	L	HYBR/SAUN
4	01140	Palazzo	Н	L	KWLO	13	01227	SU Drive VGL	Н	W	HYBR/SAUN
5	01130	Brasetto VRS	Н	L	KWLO	14	01405	HYBR 01405	Н	W	HYBR
6	01231	SU Mephisto VRS	Н	L	HYBR/SAUN	15	01408	HYBR 01408	Н	W	HYBR
7	01299	Inspector VGL	Р	L	PETR/SAUN	16	01419	LOCH 01419	Н	W	LOCH
8	01315	SU Forsetti	Н	L	HYBR/SAUN	17	01421	LOCH 01421	Н	W	LOCH
9	01324	SU Performer	Н	L	HYBR/SAUN						

^{*} Prüfungsart: L = LSV Hauptsortiment, W = Wertprüfung

 $VGL = Vergleichssorte, \ VRS = Verrechnungssorte$

H = Hybridsorte, P = Populationssorte

ANSCHRIFTEN DER ZÜCHTER/SORTENINHABER:

BAYW - BayWa AG, Arabellastraße 4, 81925 München

HYBR - Hybro Saatzucht GmbH & Co. KG, Kleptow Nr. 53, 17291 Schenkenberg

KWLO - KWS LOCHOW GmbH, Bollersener Weg 5, 29303 Bergen

PETR - P. H. Petersen Saatzucht Lundsgaard GmbH & Co KG, Streichmühler Str. 8 a, 24977 Grundhof

SAUN - Saaten-Union, Eisenstr. 12, 30916 Isernhagen

Standortbeschreibung und Anbaubedingungen

Versuchsort	Lgj.Ja	hresm.	Höhe	Boden-	Acker-	E	Bodenunte	ersuchun	9	Vorfrucht	Saat-	Aus-	Ernte
Landskreis/ Reg.bezirk	Nied. Schl.	mi.Tg. Temp.	über NN	art	zahl	Nmin kg/ha	P ₂ O ₅	K₂O	pH- Wert		stärke	saat	
	mm	°C				0-90cm	mg/10	0g Bd			Körn/m²	am	am
Rotthalmünster PA/NB	750	8,1	360	sL	72	28	13	11	5,7	Silomais	280	01.10.13	01.08.14
Wöllershof WP* NEW/Opf.	700	7,8	460	IS	36	67	19	29	6,2	Winterweizen	300	07.10.13	06.08.14
Oschwitz WUN/OFr.	728	6,4	486	sL	37	37	13	21	5,8	Winterraps	280	04.10.13	08.08.14
Großbreitenbronn WP* AN/MFr.	679	7,7	442	IS	37	71	19	17	5,4	Silomais	250	09.10.13	01.08.14
Arnstein MSP/Ufr.	640	9,0	280	tL	68	31	22	15	7,1	Wi.Weizen	270	02.10.13	18.07.14
Eiselsried WP* AIC/Schw.	680	7,4	397	uS	35	31	17	17	5,4	Silomais	260	30.09.13	25.07.14

WP*: Orte mit integrierter Wertprüfung 3 (WP3)

Düngung und Pflanzenschutz

	N-Düngung	Wachstumsregulator	Fungizid	Herbizid / Insektizid
Versuchsort	kg/ha	kg/ha, l/ha	kg/ha, l/ha	kg/ha, l/ha
	Stufe 1 + 2	Stufe 2	Stufe 2	Stufe 1 + 2
Rotthalmünster	120	Stabilan 720 1,0 ES 29 Medax Top 1,0 ES 39	Skyway Xpro 1,25 ES 55	Herold SC 0,6 ES 12
Wöllershof	110	CCC 720 0,7 ES 30 Camposan Extra 0,4 ES 39	Skyway Xpro 1,0 ES 39	Bacara Forte 1,0 ES 12 Ariane C 0,75 ES 34
Oschwitz	130	CCC 720 0,6 ES 31-32 Moddus 0,4 ES 31-32 Camposan Extra 0,6 ES 47-49	Input Xpro 1,2 ES 47-49	Herbaflex 2,0 ES 13 Primus 0,075 ES 13 Schneckenkorn 5,0 ES 11-12
Großbreitenbronn	150	Medax Top 0,3	Fandango 0,65 ES 51 Aviator Xpro 0,65 ES 51 Osiris 2,0 ES 65	Herold SC 0,5 ES 13 Pointer SX 0,025 ES 13 Starane XL 1,0 ES 34
Arnstein	150	CCC 720 1,0 ES 31-32	Osiris 2,0 ES 59 Amistar Opti 1,8 ES 59	Axial 50 1,2 ES 23-26
Eiselsried	140	CCC 720 1,0 (1,0 Stufe1) ES 30 Medax Top 0,5 ES 32	Adexar 2,0 ES 51	Bacara Forte 1,0 ES 11

Kommentar

Versuchsbedingungen

In den bayerischen Landessortenversuchen Ernte 2014 waren 12 Roggensorten (9 Hybriden und 3 Populationssorten) in jeweils zwei unterschiedlichen Intensitätsstufen an 6 Standorten zu prüfen.

Die Hybride SU Santini wurde im Hauptsortiment durch die neuen Hybridsorten KWS Bono, SU Composit und SU Cossani ersetzt. Der Landessortenversuch Winterroggen lieferte auf allen 6 Standorten verwertbare Ergebnisse. An drei Standorten wurde das Sortiment der Wertprüfung (WP) 3 des Bundessortenamtes integriert, in dem vier WP-3-Stämme zu bewerten waren.

Die Ergebnisverrechnung der Landessortenversuche für Winterroggen erfolgte anhand der Einteilung der Anbaugebiete in Boden-Klima-Räume, um regional möglichst präzise Beratungsaussagen treffen zu können.

Sortenleistung

Hybridsorten

In Bayern dominieren Hybridsorten. Obwohl die Saatgutkosten etwa doppelt so hoch sind, lohnt sich ihr Anbau meist. Nur auf sehr ertragsschwachen Standorten und bei extensivem Anbau wird der Ertragsvorteil durch das teurere Saatgut zunichte gemacht. Im fünfjährigen Mittel lieferten die Hybriden im LSV 18 % bzw. 14 dt/ha höhere Erträge.

Visello, die älteste Hybride im Versuch, kann ertraglich nicht mehr mit den neueren Hybridsorten mithalten. Visello besitzt hohe und stabile Fallzahlen. Positiv fällt auch seine geringe Mutterkornanfälligkeit auf. Weniger günstig sind die nur mittleren Einstufungen in den Merkmalen Standfestigkeit, Rhynchosporium- und Mehltauresistenz sowie seine hohe Braunrostanfälligkeit.

Palazzo und Brasetto liegen im Ertrag bei den Hybridsorten im mittleren Bereich. Ihre Fallzahlen sind unter günstigen Abreifebedingungen hoch. In den Versuchen wies Palazzo eine überdurchschnittlich gute Fallzahlstabilität auf. Abgesehen von der nur mittleren (Brasetto) bzw. etwas unterdurchschnittlichen (Palazzo) Resistenz gegenüber Braunrost liegt die Blattgesundheit sowie die Widerstandsfähigkeit gegenüber Mutterkorn im mittleren bis guten Bereich.

SU Mephisto, im Ertrag auf ähnlichem Niveau wie Palazzo und Brasetto, besitzt eine sehr gute Resistenz gegen Mehltau, aber nur eine mittlere gegen Rhynchosporium. Vom Bundessortenamt wird er als mittel bis stark mutterkornanfällig beschrieben. In der Mutterkorn-Resistenzprüfung, die Grundlage für die Sorteneinstufung ist, werden nur die reinen Hybriden getestet. Die Sorten mit den Anfangsbuchstaben SU im Namen produzieren weniger Pollen als die Populationssorten. Um die Stäubeleistung des Roggenbestandes zu verbessern und damit die Mutterkornanfälligkeit zu verringern, enthält handelsübliches Saatgut dieser Sorten deshalb 10 % gut stäubenden Populationsroggen. Aufgrund der Zumischung ist davon auszugehen, dass die Widerstandsfähigkeit gegenüber Mutterkorn bei diesen Sorten in der Praxis etwas besser ist als in der Sortenbeschreibung dargestellt. In den bayerischen Versuchen werden ebenfalls die reinen Hybriden geprüft. Da die einzelnen Sorten aber, anders als bei der Resistenzprüfung, direkt nebeneinanderstehen, ist eine gegenseitige Bestäubung eher möglich (ähnlich wie bei einer 10 %igen Beimischung). In diesen Versuchen wies SU Mephisto einen etwa doppelt so hohen Mutterkorngehalt auf wie die mittel bis gut eingestuften Sorten Palazzo und Brasetto.

SU Forsetti präsentierte sich heuer erneut ertragsstark. Mit nur mittleren Noten bei den Merkmalen Mutterkornbefall, Rhynchosporium- und Mehltauresistenz zählt er nicht zu den gesündesten Sorten. Wie auch bei **SU Performer** wird dem Saatgut 10 % Populationsroggen zur Verringerung des Mutterkornrisikos beigemischt. SU Performer bringt mit mehrjährigen Relativerträgen von 107 bis 109 %

ein ähnlich gutes Ergebnis wie SU Forsetti. Bei günstigen Abreifebedingungen liefert er sehr hohe Fallzahlen. SU Performer neigt stärker als die anderen Prüfkandidaten zu Halmknicken. Negativ fällt seine mittlere bis geringe Widerstandsfähigkeit gegenüber Mutterkorn auf.

KWS Bono, heuer zum ersten Mal an allen LSV-Standorten vertreten, kann sich ertraglich bis jetzt nicht positiv von den bewährten Hybriden abheben. Die kurzstrohige, dichte Bestände bildende Sorte mit mittlerer Standfestigkeit gehört zu den lageranfälligeren Prüfkandidaten. Seine Widerstandsfähigkeit gegenüber Rhynchosporium, Braunrost und Mutterkorn ist mittel bis gut.

SU Composit, ebenfalls eine Neuzulassung, setzt mit mehrjährigen Relativerträgen zwischen 101 und 103 % keine neuen Maßstäbe. Er ist kurzstrohig und besitzt eine gute Braunrostresistenz. Wie auch **SU Cossani** weist er nur mittlere Einstufungen im Merkmal Mutterkornbefall auf. Im Praxissaatgut wird bei beiden Sorten Populationsroggen eingemischt. SU Cossani zeigte vor allem auf den Verwitterungsstandorten Südost gute Erträge. Die heuer erstmalig im LSV angebaute Sorte bildet hohe Bestandesdichten. Standfestigkeit und Blattgesundheit sind mittel bis gut.

Populationssorten

Conduct ist mit mehrjährigen Relativerträgen von 85 bis 88 % mittlerweile die ertragsschwächste Sorte im LSV. Dort zeigte sich der langstrohige und schwächer bestockende Conduct auch lageranfälliger. Hervorzuheben ist die gute Blattgesundheit, insbesondere gegenüber Braunrost, sowie die geringe Mutterkornanfälligkeit.

Dukato liegt im Ertrag etwas über Conduct. Zu beachten ist, dass seine Fallzahl unter ungünstigen Bedingungen rasch absinken kann. Dukato weist eine ausgeglichene mittel bis gute Blattgesundheit sowie eine gute Widerstandsfähigkeit gegenüber Mutterkorn auf. Von Vorteil ist bei der längerstrohigen Sorte auch die geringe Lagerneigung.

Inspector ist von den drei geprüften Populationsroggen der Ertragsstärkste. Weiterhin zeichnet sich die längerstrohige Sorte durch eine gute Braunrostresistenz und eine geringe Mutterkornanfälligkeit aus.

Ergebnisse der Landessortenversuche

Heuer wurden in den Landessortenversuchen (LSV) 12 Roggensorten an 6 Standorten unter extensiver und intensiver Bestandesführung geprüft. Da nur die Intensivarianten bei Bedarf mit Wachstumsreglern und Fungiziden behandelt wurden, liefert ein Vergleich der Intensitäten Informationen über die Wirtschaftlichkeit der zusätzlichen Pflanzenschutzmaßnahmen. Der Ertragsunterschied zwischen den beiden Behandlungsstufen lag im fünfjährigen Mittel bei 11 dt/ha, der zusätzliche Aufwand (Wachstumsregler, Fungizide, Ausbringung) bei 104 €/ha und der kostenbereinigte Mehrerlös der Intensivvarianten bei 74 €/ha. In den Versuchen war der zusätzliche Pflanzenschutz bei 24 von 30 Versuchen wirtschaftlich. Wie heuer am Standort Arnstein (Unterfranken) zu sehen, rentiert sich die Intensitätssteigerung jedoch nicht immer. Die Behandlung des recht gesunden und nicht lagergefährdeten Bestands führte zu Mehrerträgen von fünf dt/ha, die aber nicht ausreichten, um den Zusatzaufwand zu decken.

Sortenempfehlung für den Herbstanbau 2014/2015

	Tertiärhügelland / Gäu (22)	Jura / Hügelland (23)	Fränkische Platten (21)	Verwitterungsstandorte Südost (17)
Standard- Sorten	Palazzo Brasetto SU Forsetti	Palazzo Brasetto SU Forsetti	Palazzo Brasetto SU Forsetti	Palazzo Brasetto SU Forsetti
Begrenzte Empfehlung	Dukato	Dukato	Dukato	Dukato

Kornertrag relativ, Sorten und Orte, 2014

Sorte	Тур	Wöllers-	Groß-	Eiselsried	Rotthal-	Oschwitz	Arnstein	WP3-	Mittel 6
(Mittel nur aus Hauptsor-timent)		hof	breiten- bronn		münster			Mittel 3 Orte	Orte
LSV Hauptsortiment									
Visello	н	100	98	100	104	103	98	99	101
Palazzo	н	104	97	108	105	105	102	103	104
Brasetto	н	106	104	104	102	103	104	104	104
SU Mephisto	н	108	108	98	101	101	98	105	102
SU Forsetti	н	108	102	107	108	105	108	106	107
SU Performer	н	110	104	107	112	105	110	107	108
KWS Bono	н	101	103	104	102	102	107	103	103
SU Composit	н	99	108	107	102	103	102	104	104
SU Cossani	н	111	106	104	104	108	103	107	106
Conduct	Р	84	91	88	84	86	88	88	87
Dukato	Р	85	86	85	85	88	90	85	86
Inspector	Р	84	92	87	89	90	90	88	89
Wertprüfung									
SU Drive	Н	99	102	107	-	-	-	103	-
HYBR 01405	н	109	110	96	-	-	-	105	-
HYBR 01408	н	107	102	104	-	-	-	105	-
LOCH 01419	н	103	100	110	-	-	-	104	-
LOCH 01421	Н	100	105	107	-	<u>-</u>	-	104	-
Mittel dt/ha		97,9	87,0	88,3	103,9	93,7	83,3	91,1	92,3

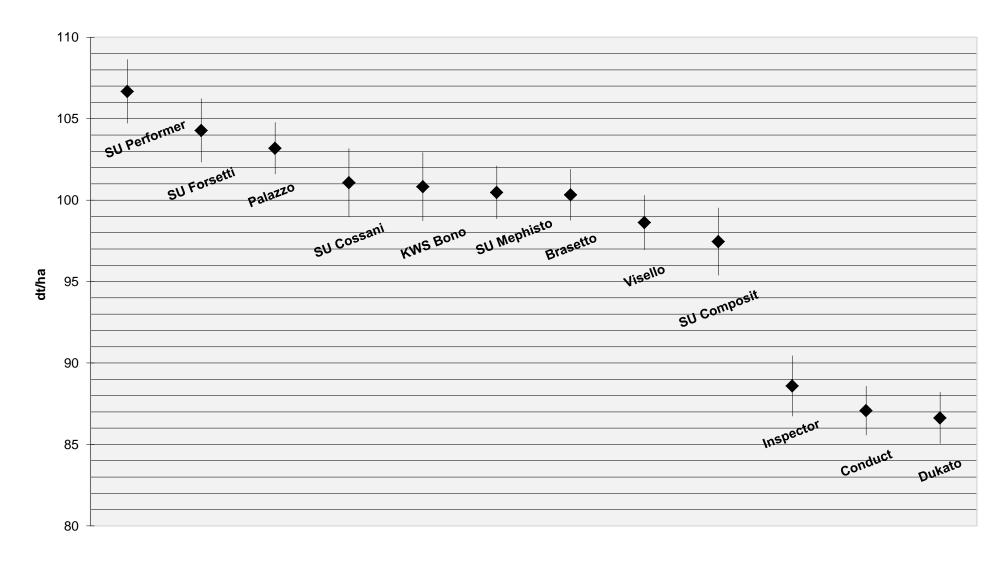
H = Hybridsorte, P = Populationssorte

Kornertrag absolut, Sorten, Anbaugebiete und Behandlungen, 2014

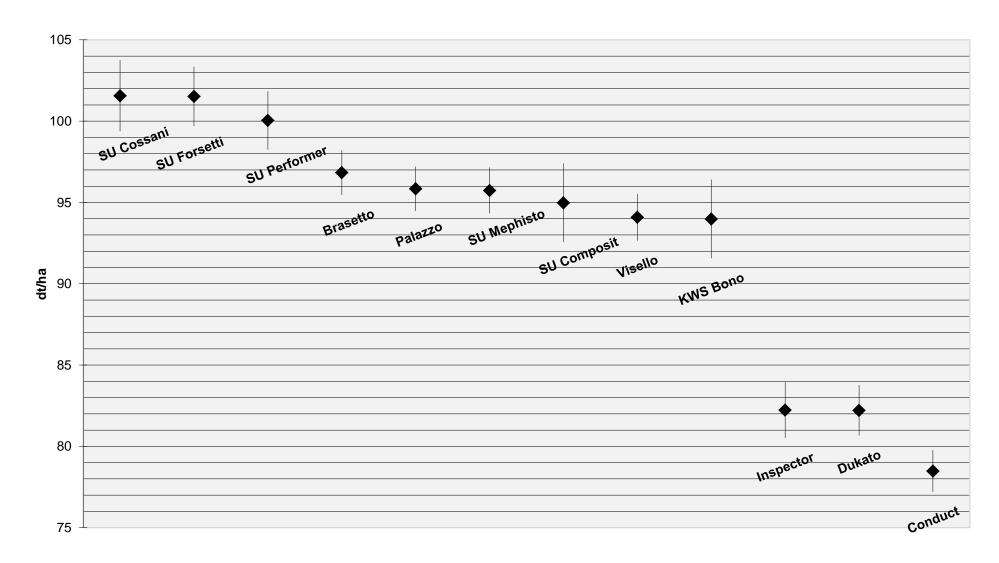
		Terti	ärhügelland (AG 22)	/Gäu	Frär	kische Platt (AG 21)	en	Verwitterungsstandorte Südost (AG 17)			
Sorte	Тур	Stufe 1	Stufe 2	Mittel	Stufe 1	Stufe 2	Mittel	Stufe 1	Stufe 2	Mittel	
LSV Hauptsortiment											
Visello	н	94,0	115,2	104,6	78,2	90,3	84,3				
Palazzo	Н	102,4	115,9	109,1	84,0	89,2	86,6	88,7	105,9	97,3	
Brasetto	Н	100,1	111,2	105,7	84,9	91,2	88,0	89,9	106,4	98,2	
SU Mephisto	Н	98,0	114,5	106,3	84,5	91,1	87,8	91,0	104,8	97,9	
SU Forsetti	Н	105,3	116,1	110,7	87,3	93,7	90,5	91,8	111,7	101,8	
SU Performer	Н	107,6	117,6	112,6	87,8	96,2	92,0	96,7	112,9	104,8	
KWS Bono	Н	98,9	113,1	106,0	84,4	92,8	88,6				
SU Composit	Н	101,5	110,6	106,0	84,7	93,1	88,9				
SU Cossani	Н	103,6	114,1	108,9	87,7	91,4	89,5	94,0	111,6	102,8	
Conduct	Р	82,3	96,1	89,2	71,3	78,4	74,8	75,6	87,9	81,8	
Dukato	Р	83,4	96,0	89,7	70,7	77,4	74,1				
Inspector	Р	86,6	98,2	92,4	74,2	78,7	76,5	77,2	90,6	83,9	
Mittel dt/ha (Hauptsortiment)		97,0	109,9	103,4	81,6	88,6	85,1	86,8	103,0	94,9	

Kornertrag relativ, Sorten, Anbaugebiete und Behandlungen, 2014

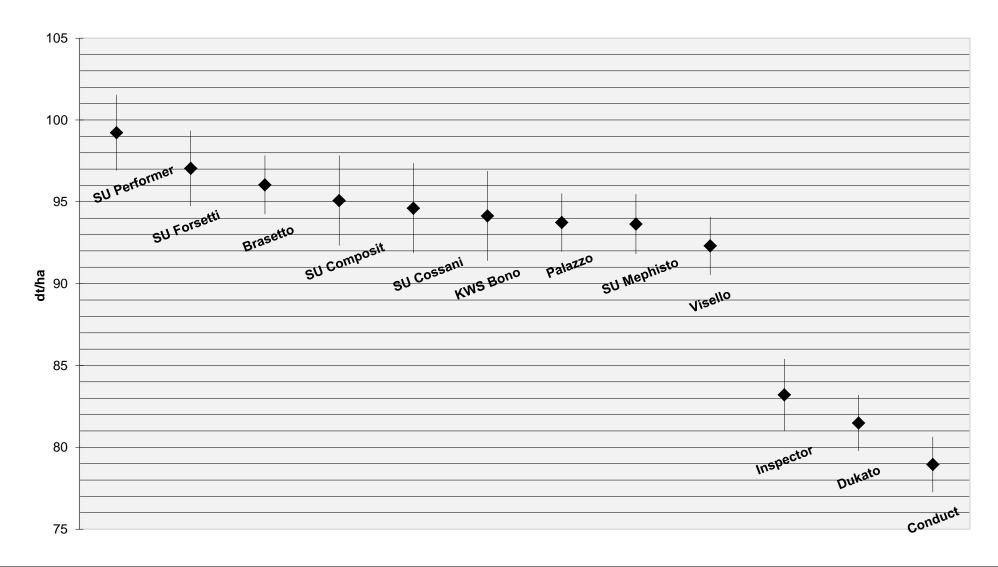
		Terti	ärhügelland (AG 22)	/Gäu	Frär	nkische Platt (AG 21)	en	Verwitterungsstandorte Südost (AG 17)			
Sorte	Тур	Stufe 1	Stufe 2	Mittel	Stufe 1	Stufe 2	Mittel	Stufe 1	Stufe 2	Mittel	
LSV Hauptsortiment											
Visello	н	97	105	101	96	102	99				
Palazzo	Н	106	105	106	103	101	102	102	103	102	
Brasetto	Н	103	101	102	104	103	103	104	103	103	
SU Mephisto	Н	101	104	103	103	103	103	105	102	103	
SU Forsetti	Н	109	106	107	107	106	106	106	108	107	
SU Performer	Н	111	107	109	107	109	108	111	110	111	
KWS Bono	Н	102	103	102	103	105	104				
SU Composit	Н	105	101	103	104	105	104				
SU Cossani	Н	107	104	105	107	103	105	108	108	108	
Conduct	Р	85	87	86	87	88	88	87	85	86	
Dukato	P	86	87	87	87	87	87				
Inspector	Р	89	89	89	91	89	90	89	88	88	
Mittel dt/ha (Hauptsortiment)		97,0	109,9	103,4	81,6	88,6	85,1	86,8	103,0	94,9	


Kornertrag absolut, Sorten, Anbaugebiete und Behandlungen, mehrjährig

		Terti	iärhügelland (AG 22)	/Gäu	Frär	nkische Platt (AG 21)	en	Verwitterungsstandorte Südost (AG 17)			
Sorte	Тур	Stufe 1	Stufe 2	Mittel	Stufe 1	Stufe 2	Mittel	Stufe 1	Stufe 2	Mittel	
abschließende Bewertung											
Visello	Н	85,3	98,6	92,0	82,2	92,3	87,3	78,8	94,1	86,5	
Palazzo	н	87,6	103,2	95,4	85,5	93,7	89,6	83,5	95,8	89,7	
Brasetto	н	87,6	100,3	94,0	88,0	96,0	92,0	83,6	96,8	90,2	
SU Mephisto	н	87,6	100,5	94,1	86,5	93,6	90,1	83,5	95,7	89,6	
SU Forsetti	н	92,6	104,3	98,4	90,1	97,0	93,6	86,6	101,5	94,1	
SU Performer	Н	93,8	106,7	100,2	87,9	99,2	93,6	87,9	100,0	94,0	
Conduct	Р	74,3	87,1	80,7	71,9	78,9	75,4	68,6	78,5	73,5	
Dukato	Р	76,3	86,6	81,5	74,0	81,5	77,7	69,2	82,2	75,7	
Inspector	Р	77,4	88,6	83,0	75,6	83,2	79,4	70,5	82,2	76,4	
vorläufige Bewertung											
KWS Bono	Н	87,4	100,8	94,1	86,0	94,1	90,1	78,9	94,0	86,4	
SU Composit	н	87,3	97,5	92,4	85,2	95,1	90,1	81,9	95,0	88,5	
SU Cossani	Н	91,6	101,1	96,4	88,5	94,6	91,5	86,7	101,6	94,1	
Mittel dt/ha (Hauptsortiment)		85,7	97,9	91,8	83,4	91,6	87,5	80,0	93,1	86,6	


Kornertrag relativ, Sorten, Anbaugebiete und Behandlungen, mehrjährig

		Tertiä	irhügelland/ (AG 22)	Gäu	Frär	nkische Platt (AG 21)	en	Verwitterungsstandorte Südost (AG 17)		
Sorte	Тур	Stufe 1	Stufe 2	Mittel	Stufe 1	Stufe 2	Mittel	Stufe 1	Stufe 2	Mittel
abschließende Bewertung										
Visello	Н	99	101	100	99	101	100	99	101	100
Palazzo	Н	102	105	104	103	102	102	104	103	104
Brasetto	н	102	102	102	105	105	105	105	104	104
SU Mephisto	н	102	103	102	104	102	103	104	103	104
SU Forsetti	н	108	106	107	108	106	107	108	109	109
SU Performer	Н	109	109	109	105	108	107	110	107	109
Conduct	Р	87	89	88	86	86	86	86	84	85
Dukato	Р	89	88	89	89	89	89	87	88	87
Inspector	Р	90	90	90	91	91	91	88	88	88
vorläufige Bewertung										
KWS Bono	н	102	103	102	103	103	103	99	101	100
SU Composit	н	102	100	101	102	104	103	102	102	102
SU Cossani	Н	107	103	105	106	103	105	108	109	109
Mittel dt/ha (Hauptsortiment)		85,7	97,9	91,8	83,4	91,6	87,5	80,0	93,1	86,6


Ertragsmittel Winterroggen mehrj. Stufe 2 mit 90%-Konfidenzintervallen Tertiärhügelland/Gäu

Ertragsmittel Winterroggen mehrj. Stufe 2 mit 90%-Konfidenzintervallen Verwitterungsstandorte Südost

Ertragsmittel Winterroggen mehrj. Stufe 2 mit 90%-Konfidenzintervallen Fränkische Platten

Kornertrag absolut, Sorten, Orte und Behandlungen, 2014

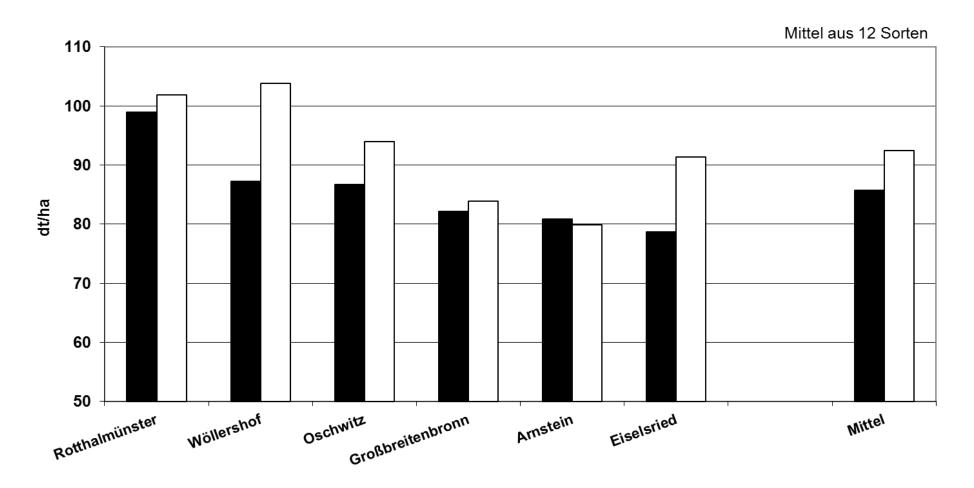
Sorte		W	öllersh	of	Großl	oreiten	bronn	Е	iselsrie	ed .	Rott	halmür	ster	C	Schwit	tz	P	rnstei	n
(Mittel nur aus Hauptsor-	Тур																		
timent)		St 1	St 2	Mittel	St 1	St 2	Mittel	St 1	St 2	Mittel	St 1	St 2	Mittel	St 1	St 2	Mittel	St 1	St 2	Mittel
LSV Hauptsortiment																			
Visello	Н	85,6	110,8	98,2	77,2	92,8	85,0	75,4	101,2	88,3	97,1	119,0	108,0	89,1	103,5	96,3	78,3	85,5	81,9
Palazzo	н	90,5	112,4	101,4	80,9	88,8	84,9	86,2	105,0	95,6	104,4	114,3	109,4	91,1	104,9	98,0	83,8	85,6	84,7
Brasetto	н	93,1	113,7	103,4	84,7	95,6	90,1	85,7	97,6	91,7	103,1	109,4	106,3	93,8	100,0	96,9	85,1	88,2	86,7
SU Mephisto	н	98,1	114,0	106,1	90,1	98,3	94,2	68,6	104,1	86,3	99,3	109,9	104,6	89,0	99,8	94,4	80,7	82,8	81,8
SU Forsetti	н	93,0	118,9	106,0	84,9	93,3	89,1	88,8	100,1	94,5	106,8	117,9	112,3	85,1	111,1	98,1	86,7	93,9	90,3
SU Performer	Н	96,0	120,2	108,1	84,0	96,6	90,3	90,9	98,6	94,8	111,3	121,4	116,4	90,1	106,9	98,5	86,5	96,2	91,4
KWS Bono	н	88,6	109,1	98,8	84,0	95,0	89,5	81,1	102,6	91,9	103,5	109,1	106,3	87,3	104,2	95,7	85,7	92,0	88,8
SU Composit	н	83,9	110,8	97,4	89,4	98,5	93,9	86,5	101,9	94,2	105,9	106,9	106,4	89,7	104,0	96,8	78,4	91,2	84,8
SU Cossani	н	98,7	118,3	108,5	87,8	97,4	92,6	80,8	103,2	92,0	105,4	111,1	108,3	91,9	110,7	101,3	86,8	84,9	85,9
Conduct	Р	73,1	90,8	82,0	75,9	83,2	79,5	66,7	89,0	77,9	80,5	94,8	87,6	76,4	85,3	80,8	70,9	76,1	73,5
Dukato	Р	74,8	90,9	82,8	71,7	78,9	75,3	65,6	84,2	74,9	81,5	94,6	88,0	76,2	88,8	82,5	72,1	77,8	74,9
Inspector	Р	72,6	92,6	82,6	75,8	84,5	80,1	67,6	86,7	77,1	88,5	97,4	93,0	80,4	88,6	84,5	75,4	74,1	74,8
Wertprüfung																			
SU Drive	Н	86,2	107,4	96,8	87,1	91,3	89,2	88,1	101,2	94,6	-	-	-	-	-	-	-	-	-
HYBR 01405	н	98,5	114,1	106,3	91,6	99,8	95,7	70,0	100,3	85,2	-	-	-	-	-	-	-	-	-
HYBR 01408	н	95,2	114,3	104,8	85,4	92,9	89,1	81,8	102,5	92,1	-	-	-	-	-	_	-	-	-
LOCH 01419	н	91,7	109,9	100,8	83,7	91,2	87,4	86,5	107,0	96,7	-	-	-	-	-	_	-	-	-
LOCH 01421	Н	88,4	108,2	98,3	87,3	96,2	91,7	82,5	106,3	94,4			-			_			-
Mittel dt/ha		87,3	108,6	97,9	82,2	91,9	87,0	78,7	97,8	88,3	98,9	108,8	103,9	86,7	100,6	93,7	80,9	85,7	83,3

Rentabilität des Produktionsmitteleinsatzes

				Stuf	1 م			Zι	ısätzlich	e Maßnahmen	in Stufe	2 im Ve	rgleich z	u Stufe 1			
				Star	C I	Wachs	tumsregl	ereinsat	Z	Fu	ıngizideir	nsatz					
Versuchsort	Vorfrucht	Nmin	N- Gabe kg/ha	Aufwand WR I / €	Ertrag dt/ha	Mittel	Aufw. menge I/ha	Aus- bring- kost. €/ha	WR- Kosten €/ha	Mittel	Aufw. menge I/ha	Aus- bring- kost. €/ha	Fungi- zid- kosten €/ha	Gesamt- mehr- kosten in St.2 €/ha	Ertrag St. 2 dt/ha	Mehr- ertrag in St. 2 dt/ha	Mehr- erlös in St.2 €/ha
Rotthalmünster	Silomais	28	120		98,9	Stabilan 720 Medax Top	1,00 1,00	5,34 5,34	47,48	Skyway Xpro	1,25	5,34	78,47	125,95	108,8	9,9	54,23
Wöllershof	Wi.Weizen	67	110		87,3	CCC 720 Camposan E.	0,70 0,40	5,34 5,34	26,65	Skyway Xpro	1,00		58,50	85,15	108,5	21,2	300,69
Oschwitz	Wi.Raps	37	130		86,7	CCC 720 Moddus Camposan E.	0,60 0,40 0,60	5,34 5,34	60,34	Input Xpro	1,20		60,12	120,46	100,6	13,9	132,52
Großbreitenbronn	Silomais	71	150		82,2	Medax Top	0,30	5,34	15,18	Fandango Aviator Xpro Osiris	0,65 0,65 2,00	5,34	130,02	145,20	91,9	9,7	31,34
Arnstein	Wi.Weizen	31	150		80,9	CCC 720	1,00	5,34	8,84	Osiris Amistar Opti	2,00 1,80	5,34	97,08	105,92	85,7	4,8	-18,56
Eiselsried*	Silomais	31	140	1,00 8,84	78,7	CCC 720 Medax Top	1,00 0,50	5,34 5,34	30,58	Adexar	2,00	5,34	95,14	116,88	97,8	19,1	230,74
Durchschnitt					85,8									116,59	98,9	13,1	121,83

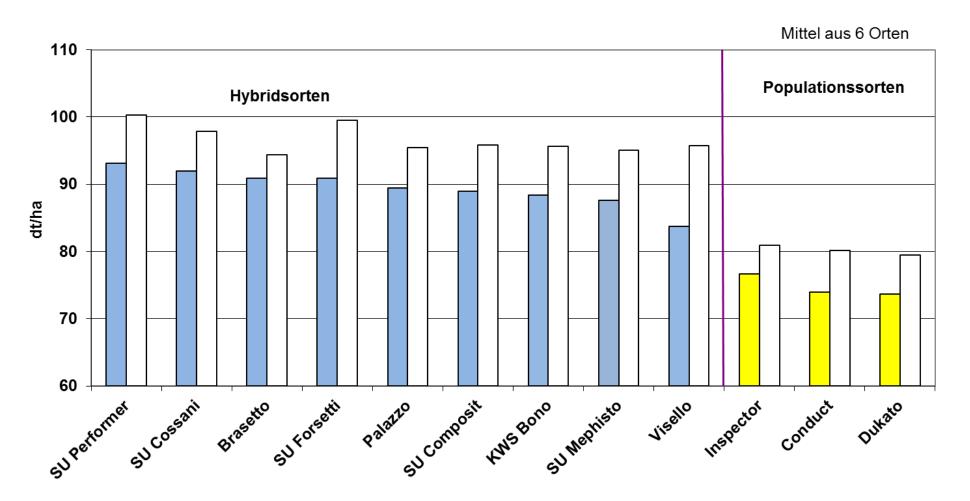
*Wachstumsreglereinsatz in Stufe 1

Winterroggenpreis: 18,20 € / dt incl. MwSt., nach Durchschnittssätzen 2009-2013


ILB München: Pflanzenschutzmittelpreise 2014 und Ausbringungskosten nach Durchschnittssätzen von 2009-2013, Eigenmechanisierung unterstellt

unter Berücksichtigung günstiger Packpreise bei Pflanzenschutzmitteln

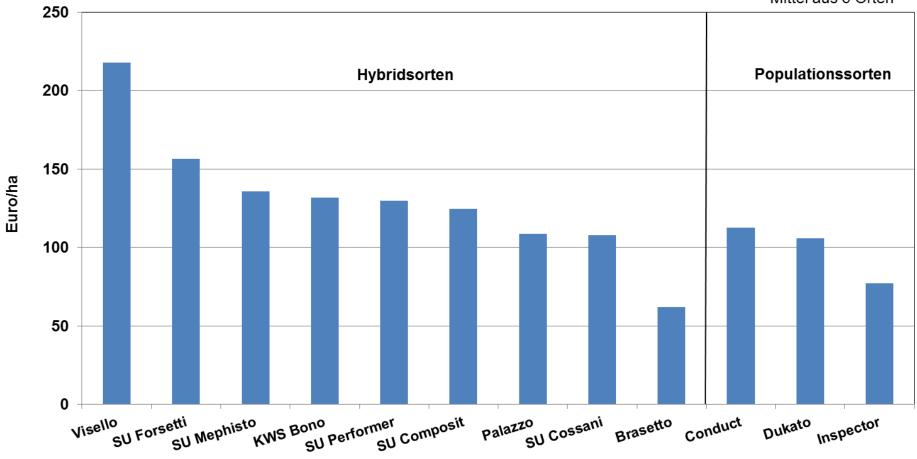
Quelle: LfL IPZ 2a, Sortiment 072/2014, Mittel aus 12 Sorten



Kornertrag in 2 Intensitätsstufen bei Winterroggen 2014

- Ertrag ohne WR und Fungizide (Stufe 1)
- □kostenbereinigter Ertrag der Stufe 2

Kornertrag in 2 Intensitätsstufen bei Winterroggen 2014

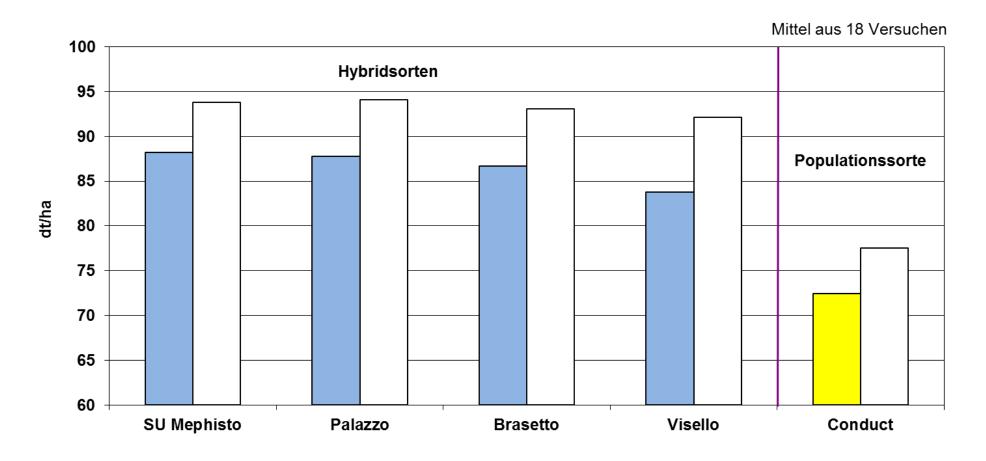

■ Ertrag ohne WR und Fungizide (Stufe 1)

□kostenbereinigter Ertrag der Stufe 2

ohne Berücksichtigung Saatgutkosten

Kostenbereinigter Mehrerlös bei Winterroggen 2014

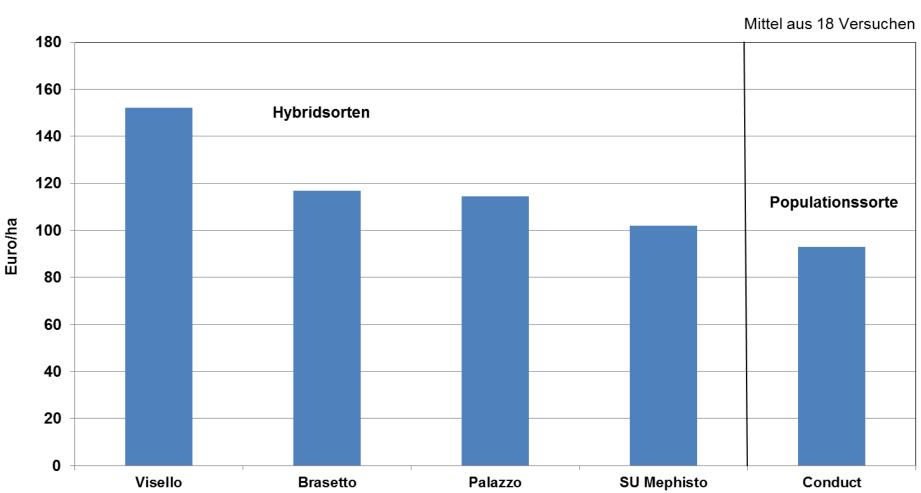
■ kostenbereinigter Mehrerlös der Stufe 2 gegenüber Stufe 1*


ohne Berücksichtigung Saatgutkosten

* Stufe 1 ohne WR- und Fungizideinsatz

Preis Roggen: 18,20 €/dt incl. MwSt., nach Durchschittssätzen 2009-2013

Kornertrag in 2 Intensitätsstufen bei Winterroggen 2012-2014



□ Ertrag ohne WR und Fungizide (Stufe 1)

□kostenbereinigter Ertrag der Stufe 2

ohne Berücksichtigung der Saatgutkosten

Kostenbereinigter Mehrerlös bei Winterroggen 2012-2014

■ kostenbereinigter Mehrerlös der Stufe 2 gegenüber Stufe 1*

ohne Berücksichtigung Saatgutkosten

Preis Roggen: 18,20 €/dt incl. MwSt., nach Durchschittssätzen 2009-2013

^{*} Stufe 1 ohne WR- und Fungizideinsatz

Beobachtungen und Feststellungen

			Mär	ngel					Pfla	nzenlä	inge						
Sorte / Jahr		nach Aufg.	vor Wint.	nach Wint.	nach ÄS	Äŀ	ı ııa	cm	iiigc	Lage	r vor I	Ernte	Halı	nknick	ken		
		MW	MW	MW	MW	1	2	MW	1	2	MW	1	2	MW	1	2	MW
Conduct	2012	2,4	2,2	1,9	1,2	507	495	501	159	143	151	6,0	4,1	5,1	7,0	5,3	6,2
	2013	1,3	1,6	2,3	2,2	474	515	501	158	153	156	6,2	2,4	4,3	2,7	2,3	2,5
	2014	1,7	1,3	1,8	1,7	560	537	546	166	152	159	7,1	4,9	6,0	6,3	5,0	5,7
	MW	1,9	1,7	2,0	1,7	516	517	517	161	150	155	6,5	3,9	5,2	5,3	4,2	4,8
Visello	2012	2,2	2,2	1,9	1,7	537	536	537	138	126	132	6,9	3,9	5,4	8,3	3,3	5,8
	2013	2,0	2,4	3,4	1,0	445	531	509	143	137	140	6,0	2,7	4,3	3,0	2,0	2,5
	2014	2,8	1,9	2,5	1,8	600	543	557	148	136	142	7,5	4,1	5,8	4,3	3,0	3,7
	MW	2,3	2,1	2,5	1,5	530	536	534	143	133	138	6,9	3,6	5,2	5,2	2,8	4,0
Dukato	2012	1,9	1,9	1,7	1,0	510	520	515	152	141	147	5,7	3,6	4,6	6,7	5,3	6,0
	2013	1,0	1,5	2,3	1,7	450	516	505	151	147	149	5,8	2,1	4,0	3,7	2,0	2,8
	2014	2,6	2,0	2,1	1,5	488	523	514	160	153	157	6,5	4,1	5,3	5,3	4,3	4,8
	MW	1,9	1,9	2,0	1,4	495	520	512	155	147	151	6,0	3,3	4,7	5,2	3,9	4,6
Palazzo	2012	1,9	1,9	1,7	1,0	519	516	517	144	130	137	5,9	3,7	4,8	7,0	3,3	5,2
	2013	1,4	1,7	2,9	1,0	526	551	543	151	143	147	4,9	1,8	3,3	2,7	1,7	2,2
	2014	3,4	2,3	2,8	1,5	638	521	551	154	143	148	6,7	3,4	5,1	6,3	4,7	5,5
	MW	2,2	2,0	2,4	1,2	545	530	536	149	138	144	5,9	3,1	4,5	5,3	3,2	4,3
Brasetto	2012	1,9	2,1	1,8	1,0	526	531	529	139	123	131	6,4	3,8	5,1	8,7	3,7	6,2
	2013	2,0	1,8	3,0	1,5	519	507	511	147	137	142	5,6	1,9	3,7	3,0	2,3	2,7
	2014	2,7	2,0	2,5	1,8	600	538	563	147	133	140	7,2	3,2	5,2	4,7	3,3	4,0
	MW	2,1	2,0	2,3	1,4	549	525	535	144	131	138	6,5	3,0	4,8	5,4	3,1	4,3
SU Mephisto	2012	1,7	2,0	1,8	1,3	555	499	527	142	123	132	6,3	3,1	4,7	5,0	3,7	4,3
	2013	1,4	1,4	2,4	1,3	577	564	568	148	134	141	4,3	1,6	3,0	3,7	1,0	2,3
	2014	2,3	1,6	1,9	2,3	553	528	538	151	135	143	6,6	3,3	5,0	4,3	3,7	4,0
	MW	1,8	1,7	2,0	1,7	560	532	544	147	131	139	5,8	2,7	4,3	4,3	2,8	3,6

Beobachtungen und Feststellungen – Fortsetzung

			Mär	ngel					Pfla	nzenlä	inge						
Sorte / Jahr		nach Aufg.	vor Wint.	nach Wint.	nach ÄS	Al	nren/m	2	1 110	cm	iiige	Lage	r vor E	Ernte	Halı	mknick	cen
		MW	MW	MW	MW	1	2	MW	1	2	MW	1	2	MW	1	2	MW
Inspector	2013	2,0	2,3	3,2	1,3	449	515	498	157	151	154	5,4	2,3	3,8	3,3	2,3	2,8
	2014	1,8	1,6	1,9	1,5	555	553	554	160	147	154	7,0	4,5	5,7	5,0	4,3	4,7
SU Forsetti	2013	1,2	1,5	2,3	1,0	500	566	549	142	137	139	4,8	1,8	3,3	2,7	2,0	2,3
	2014	2,4	1,7	2,3	1,5	475	592	563	144	135	139	6,8	3,8	5,3	7,0	4,7	5,8
SU Performer	2013	1,2	1,7	2,5	1,0	454	559	533	144	136	140	5,3	1,4	3,3	3,3	3,0	3,2
	2014	1,9	1,5	2,0	1,7	629	572	586	145	134	139	7,0	4,3	5,6	7,0	4,7	5,8
KWS Bono	2014	2,9	2,4	2,4	2,7	633	582	595	144	136	140	7,0	4,1	5,5	6,7	4,0	5,3
SU Composit	2014	1,8	1,4	1,8	2,0	646	540	567	146	133	140	7,5	4,1	5,8	5,7	3,3	4,5
SU Cossani	2014	1,6	1,2	1,5	1,7	564	566	566	151	135	143	7,1	3,4	5,3	6,3	4,7	5,5
Mittelwert	2012	2,0	2,1	1,8	1,2	526	516	521	146	131	138	6,2	3,7	5,0	7,1	4,1	5,6
Haupt-	2013	1,5	1,8	2,7	1,3	488	536	524	149	141	145	5,4	2,0	3,7	3,1	2,1	2,6
sortiment	2014	2,3	1,7	2,1	1,8	578	550	558	151	139	145	7,0	3,9	5,5	5,7	4,1	4,9
	MW	2,0	1,9	2,2	1,5	532	527	530	150	138	144	6,3	3,3	4,8	5,1	3,3	4,3
Anzahl	2012	3	3	4	1	5	5	5	6	6	6	5	5	5	1	1	1
Orte	2013	2	3	3	1	3	6	6	6	6	6	4	4	4	1	1	1
	2014	2	4	4	1	4	6	6	6	6	6	5	5	5	1	1	1

Beobachtungen und Feststellungen - Fortsetzung

Sorte / Jahr		Rhyn	chosp	orium	Bla	ttsepto	oria	В	raunro	st		utterko zahl/5(Datum Ähren- schieben
		1	2	MW	1	2	MW	1	2	MW	1	2	MW	MW
Conduct	2012	3,3	2,3	2,8	-	-	-	3,4	1,4	2,4	4,2	5,0	4,6	13.05.
	2013	4,2	2,5	3,3	-	-	-	3,2	1,5	2,3	8,0	14,8	11,4	19.05.
	2014	3,5	1,7	2,6	6,3	2,8	4,5	2,6	1,3	1,9	-	-	-	06.05.
	MW	3,7	2,1	2,9	6,3	2,8	4,5	3,1	1,4	2,3	6,1	9,9	8,0	
Visello	2012	4,0	2,0	3,0	-	-	-	6,1	1,3	3,7	1,3	2,3	1,8	14.05.
	2013	4,2	2,7	3,4	-	-	-	4,9	2,0	3,5	6,7	12,0	9,3	20.05.
	2014	3,2	1,7	2,4	6,5	3,3	4,9	4,6	1,3	2,9	-	-	-	07.05.
	MW	3,7	2,1	2,9	6,5	3,3	4,9	5,2	1,6	3,4	4,0	7,2	5,6	
Dukato	2012	3,0	2,0	2,5	-	-	-	4,2	1,2	2,7	1,2	6,3	3,8	13.05.
	2013	3,5	2,3	2,9	-	-	-	3,6	1,0	2,3	8,2	17,8	13,0	18.05.
	2014	4,0	2,0	3,0	6,3	3,3	4,8	3,0	1,2	2,1	-	-	-	06.05.
	MW	3,6	2,1	2,9	6,3	3,3	4,8	3,6	1,1	2,4	4,4	11,5	8,0	
Palazzo	2012	4,0	2,3	3,2	-	-	-	5,6	1,8	3,7	1,5	2,2	1,8	15.05.
	2013	3,5	2,8	3,2	-	-	-	5,3	1,8	3,5	7,0	17,3	12,2	20.05.
	2014	3,0	1,0	2,0	6,3	3,5	4,9	5,4	1,4	3,4	-	-	-	08.05.
	MW	3,4	2,0	2,7	6,3	3,5	4,9	5,4	1,7	3,5	4,3	9,8	7,0	
Brasetto	2012	3,7	1,7	2,7	-	-	-	5,1	1,4	3,3	1,7	4,3	3,0	14.05.
	2013	3,8	2,3	3,1	-	-	-	4,7	1,8	3,3	12,2	28,3	20,3	20.05.
	2014	3,7	1,5	2,6	6,8	3,0	4,9	3,9	1,4	2,6	-	-	-	07.05.
	MW	3,7	1,9	2,8	6,8	3,0	4,9	4,6	1,6	3,1	6,9	16,3	11,6	
SU Mephisto	2012	4,3	2,0	3,2	-	-	-	4,9	1,3	3,1	5,8	10,5	8,2	13.05.
	2013	3,2	2,8	3,0	-	-	-	3,7	1,4	2,5	19,5	43,2	31,3	18.05.
	2014	3,2	1,3	2,3	7,0	3,0	5,0	3,5	1,2	2,3	-	-	-	07.05.
	MW	3,4	2,1	2,7	7,0	3,0	5,0	4,0	1,3	2,7	12,7	26,8	19,8	

Beobachtungen und Feststellungen - Fortsetzung

Sorte / Jahr		Rhynchosporium						В	raunro	st		utterko zahl/50		Datum Ähren- schieben
		1	2	MW	1	2	MW	1	2	MW	1	2	MW	MW
Inspector	2013	3,8	3,0	3,4	-	-	-	3,8	1,6	2,7	19,2	32,5	25,8	19.05.
	2014	3,8	1,7	2,8	6,0	3,3	4,6	2,4	1,2	1,8	-	-	-	07.05.
SU Forsetti	2013	3,5	2,5	3,0	-	-	-	3,8	1,6	2,7	23,5	37,8	30,7	18.05.
	2014	3,2	1,3	2,3	6,8	3,0	4,9	4,1	1,8	3,0	-	-	-	07.05.
SU Performer	2013	3,3	2,2	2,8	-	-	-	3,4	1,4	2,4	37,2	29,5	33,3	19.05.
	2014	3,3	1,5	2,4	6,8	2,5	4,6	3,2	1,2	2,2	-	-	-	07.05.
KWS Bono	2014	3,0	1,2	2,1	6,5	2,5	4,5	3,8	1,2	2,5	-	-	-	08.05.
SU Composit	2014	3,5	1,5	2,5	7,3	2,8	5,0	2,3	1,3	1,8	-	-	-	08.05.
SU Cossani	2014	3,7	1,5	2,6	7,0	2,5	4,8	3,6	1,1	2,3	-	-	-	06.05.
Mittelwert	2012	3,7	2,1	2,9	-	-	-	4,9	1,4	3,2	2,6	5,1	3,9	
Haupt-	2013	3,7	2,6	3,1	-	-	-	4,0	1,6	2,8	15,7	25,9	20,8	
sortiment	2014	3,4	1,5	2,5	6,6	3,0	4,8	3,5	1,3	2,4	-	-	-	
	MW	3,6	2,1	2,8	6,5	3,2	4,8	4,3	1,5	2,9	6,4	13,6	10,0	
Anzahl	2012	1	1	1	0	0	0	3	3	3	6	6	6	
Orte	2013	2	2	2	0	0	0	4	4	4	6	6	6	
	2014	2	2	2	1	1	1	3	3	3	0	0	0	

Beobachtungen und Feststellungen - Wertprüfung

			Mär	ngel		Ähnen/m²			Pflanzenlänge			_			III-landada I		
Sorte / Jahr		nach Aufg.	vor Wint.	nach Wint.	nach ÄS	Al	nren/m	2	i iia	cm	iigo	Lage	er vor I	Ernte	Halmknicken		
		MW	MW	MW	MW	1	2	MW	1	2	MW	1	2	MW	1	2	MW
SU Drive	2014	1,2	1,3	1,5	-	482	573	528	152	141	146	6,1	3,6	4,8	5,0	3,7	4,3
HYBR 01405	2014	1,0	1,1	1,3	-	572	542	554	155	146	151	6,9	3,6	5,2	4,7	4,3	4,5
HYBR 01408	2014	1,5	1,3	1,5	-	478	592	546	147	136	141	5,4	3,9	4,7	6,0	4,7	5,3
LOCH 01419	2014	2,2	1,6	2,2	-	566	459	502	147	144	145	7,1	5,1	6,1	6,0	5,7	5,8
LOCH 01421	2014	2,0	1,8	1,8	-	562	592	580	154	150	152	6,7	3,0	4,8	3,0	2,7	2,8

Sorte / Jahr		Rhyn	chosp	orium	Bla	ttsepto	oria	Ві	raunro	st		utterko zahl/5		Datum Ähren- schieben
		1	2	MW	1	2	MW	1	2	MW	1	2	MW	MW
SU Drive	2014	2,7	1,0	1,8	-	-	-	4,7	1,3	3,0	-	-	-	18.05.
HYBR 01405	2014	3,3	1,0	2,2	-	-	-	3,3	1,2	2,3	-	-	-	19.05.
HYBR 01408	2014	3,3	1,0	2,2	-	-	-	4,2	1,3	2,8	-	-	-	19.05.
LOCH 01419	2014	3,7	1,0	2,3	-	-	-	4,5	1,2	2,8	-	-	-	18.05.
LOCH 01421	2014	4,0	2,0	3,0	-	-	-	4,0	1,3	2,7	-	-	-	18.05.